3.293 \(\int (7+5 x^2)^3 (2+3 x^2+x^4)^{3/2} \, dx\)

Optimal. Leaf size=219 \[ \frac{1171349 \sqrt{2} \left (x^2+1\right ) \sqrt{\frac{x^2+2}{x^2+1}} \text{EllipticF}\left (\tan ^{-1}(x),\frac{1}{2}\right )}{5005 \sqrt{x^4+3 x^2+2}}+\frac{125}{13} \left (x^4+3 x^2+2\right )^{5/2} x^3+\frac{3825}{143} \left (x^4+3 x^2+2\right )^{5/2} x+\frac{\left (65345 x^2+208212\right ) \left (x^4+3 x^2+2\right )^{3/2} x}{3003}+\frac{\left (297911 x^2+1032541\right ) \sqrt{x^4+3 x^2+2} x}{5005}+\frac{20884 \left (x^2+2\right ) x}{65 \sqrt{x^4+3 x^2+2}}-\frac{20884 \sqrt{2} \left (x^2+1\right ) \sqrt{\frac{x^2+2}{x^2+1}} E\left (\tan ^{-1}(x)|\frac{1}{2}\right )}{65 \sqrt{x^4+3 x^2+2}} \]

[Out]

(20884*x*(2 + x^2))/(65*Sqrt[2 + 3*x^2 + x^4]) + (x*(1032541 + 297911*x^2)*Sqrt[2 + 3*x^2 + x^4])/5005 + (x*(2
08212 + 65345*x^2)*(2 + 3*x^2 + x^4)^(3/2))/3003 + (3825*x*(2 + 3*x^2 + x^4)^(5/2))/143 + (125*x^3*(2 + 3*x^2
+ x^4)^(5/2))/13 - (20884*Sqrt[2]*(1 + x^2)*Sqrt[(2 + x^2)/(1 + x^2)]*EllipticE[ArcTan[x], 1/2])/(65*Sqrt[2 +
3*x^2 + x^4]) + (1171349*Sqrt[2]*(1 + x^2)*Sqrt[(2 + x^2)/(1 + x^2)]*EllipticF[ArcTan[x], 1/2])/(5005*Sqrt[2 +
 3*x^2 + x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.12395, antiderivative size = 219, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {1206, 1679, 1176, 1189, 1099, 1135} \[ \frac{125}{13} \left (x^4+3 x^2+2\right )^{5/2} x^3+\frac{3825}{143} \left (x^4+3 x^2+2\right )^{5/2} x+\frac{\left (65345 x^2+208212\right ) \left (x^4+3 x^2+2\right )^{3/2} x}{3003}+\frac{\left (297911 x^2+1032541\right ) \sqrt{x^4+3 x^2+2} x}{5005}+\frac{20884 \left (x^2+2\right ) x}{65 \sqrt{x^4+3 x^2+2}}+\frac{1171349 \sqrt{2} \left (x^2+1\right ) \sqrt{\frac{x^2+2}{x^2+1}} F\left (\tan ^{-1}(x)|\frac{1}{2}\right )}{5005 \sqrt{x^4+3 x^2+2}}-\frac{20884 \sqrt{2} \left (x^2+1\right ) \sqrt{\frac{x^2+2}{x^2+1}} E\left (\tan ^{-1}(x)|\frac{1}{2}\right )}{65 \sqrt{x^4+3 x^2+2}} \]

Antiderivative was successfully verified.

[In]

Int[(7 + 5*x^2)^3*(2 + 3*x^2 + x^4)^(3/2),x]

[Out]

(20884*x*(2 + x^2))/(65*Sqrt[2 + 3*x^2 + x^4]) + (x*(1032541 + 297911*x^2)*Sqrt[2 + 3*x^2 + x^4])/5005 + (x*(2
08212 + 65345*x^2)*(2 + 3*x^2 + x^4)^(3/2))/3003 + (3825*x*(2 + 3*x^2 + x^4)^(5/2))/143 + (125*x^3*(2 + 3*x^2
+ x^4)^(5/2))/13 - (20884*Sqrt[2]*(1 + x^2)*Sqrt[(2 + x^2)/(1 + x^2)]*EllipticE[ArcTan[x], 1/2])/(65*Sqrt[2 +
3*x^2 + x^4]) + (1171349*Sqrt[2]*(1 + x^2)*Sqrt[(2 + x^2)/(1 + x^2)]*EllipticF[ArcTan[x], 1/2])/(5005*Sqrt[2 +
 3*x^2 + x^4])

Rule 1206

Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(e^q*x^(2*q - 3)*(
a + b*x^2 + c*x^4)^(p + 1))/(c*(4*p + 2*q + 1)), x] + Dist[1/(c*(4*p + 2*q + 1)), Int[(a + b*x^2 + c*x^4)^p*Ex
pandToSum[c*(4*p + 2*q + 1)*(d + e*x^2)^q - a*(2*q - 3)*e^q*x^(2*q - 4) - b*(2*p + 2*q - 1)*e^q*x^(2*q - 2) -
c*(4*p + 2*q + 1)*e^q*x^(2*q), x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2
- b*d*e + a*e^2, 0] && IGtQ[q, 1]

Rule 1679

Int[(Pq_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{q = Expon[Pq, x^2], e = Coeff[Pq, x^2,
 Expon[Pq, x^2]]}, Simp[(e*x^(2*q - 3)*(a + b*x^2 + c*x^4)^(p + 1))/(c*(2*q + 4*p + 1)), x] + Dist[1/(c*(2*q +
 4*p + 1)), Int[(a + b*x^2 + c*x^4)^p*ExpandToSum[c*(2*q + 4*p + 1)*Pq - a*e*(2*q - 3)*x^(2*q - 4) - b*e*(2*q
+ 2*p - 1)*x^(2*q - 2) - c*e*(2*q + 4*p + 1)*x^(2*q), x], x], x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x^2]
&& Expon[Pq, x^2] > 1 && NeQ[b^2 - 4*a*c, 0] &&  !LtQ[p, -1]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(x*(2*b*e*p + c*d*(4*p
+ 3) + c*e*(4*p + 1)*x^2)*(a + b*x^2 + c*x^4)^p)/(c*(4*p + 1)*(4*p + 3)), x] + Dist[(2*p)/(c*(4*p + 1)*(4*p +
3)), Int[Simp[2*a*c*d*(4*p + 3) - a*b*e + (2*a*c*e*(4*p + 1) + b*c*d*(4*p + 3) - b^2*e*(2*p + 1))*x^2, x]*(a +
 b*x^2 + c*x^4)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && GtQ[p, 0] && FractionQ[p] && IntegerQ[2*p]

Rule 1189

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[d, Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Dist[e, Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b +
 q)/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1099

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[((2*a + (b +
q)*x^2)*Sqrt[(2*a + (b - q)*x^2)/(2*a + (b + q)*x^2)]*EllipticF[ArcTan[Rt[(b + q)/(2*a), 2]*x], (2*q)/(b + q)]
)/(2*a*Rt[(b + q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]), x] /; PosQ[(b + q)/a] &&  !(PosQ[(b - q)/a] && SimplerSq
rtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rule 1135

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(x*(b +
q + 2*c*x^2))/(2*c*Sqrt[a + b*x^2 + c*x^4]), x] - Simp[(Rt[(b + q)/(2*a), 2]*(2*a + (b + q)*x^2)*Sqrt[(2*a + (
b - q)*x^2)/(2*a + (b + q)*x^2)]*EllipticE[ArcTan[Rt[(b + q)/(2*a), 2]*x], (2*q)/(b + q)])/(2*c*Sqrt[a + b*x^2
 + c*x^4]), x] /; PosQ[(b + q)/a] &&  !(PosQ[(b - q)/a] && SimplerSqrtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; Fre
eQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]

Rubi steps

\begin{align*} \int \left (7+5 x^2\right )^3 \left (2+3 x^2+x^4\right )^{3/2} \, dx &=\frac{125}{13} x^3 \left (2+3 x^2+x^4\right )^{5/2}+\frac{1}{13} \int \left (2+3 x^2+x^4\right )^{3/2} \left (4459+8805 x^2+3825 x^4\right ) \, dx\\ &=\frac{3825}{143} x \left (2+3 x^2+x^4\right )^{5/2}+\frac{125}{13} x^3 \left (2+3 x^2+x^4\right )^{5/2}+\frac{1}{143} \int \left (41399+28005 x^2\right ) \left (2+3 x^2+x^4\right )^{3/2} \, dx\\ &=\frac{x \left (208212+65345 x^2\right ) \left (2+3 x^2+x^4\right )^{3/2}}{3003}+\frac{3825}{143} x \left (2+3 x^2+x^4\right )^{5/2}+\frac{125}{13} x^3 \left (2+3 x^2+x^4\right )^{5/2}+\frac{\int \left (1322334+893733 x^2\right ) \sqrt{2+3 x^2+x^4} \, dx}{3003}\\ &=\frac{x \left (1032541+297911 x^2\right ) \sqrt{2+3 x^2+x^4}}{5005}+\frac{x \left (208212+65345 x^2\right ) \left (2+3 x^2+x^4\right )^{3/2}}{3003}+\frac{3825}{143} x \left (2+3 x^2+x^4\right )^{5/2}+\frac{125}{13} x^3 \left (2+3 x^2+x^4\right )^{5/2}+\frac{\int \frac{21084282+14472612 x^2}{\sqrt{2+3 x^2+x^4}} \, dx}{45045}\\ &=\frac{x \left (1032541+297911 x^2\right ) \sqrt{2+3 x^2+x^4}}{5005}+\frac{x \left (208212+65345 x^2\right ) \left (2+3 x^2+x^4\right )^{3/2}}{3003}+\frac{3825}{143} x \left (2+3 x^2+x^4\right )^{5/2}+\frac{125}{13} x^3 \left (2+3 x^2+x^4\right )^{5/2}+\frac{20884}{65} \int \frac{x^2}{\sqrt{2+3 x^2+x^4}} \, dx+\frac{2342698 \int \frac{1}{\sqrt{2+3 x^2+x^4}} \, dx}{5005}\\ &=\frac{20884 x \left (2+x^2\right )}{65 \sqrt{2+3 x^2+x^4}}+\frac{x \left (1032541+297911 x^2\right ) \sqrt{2+3 x^2+x^4}}{5005}+\frac{x \left (208212+65345 x^2\right ) \left (2+3 x^2+x^4\right )^{3/2}}{3003}+\frac{3825}{143} x \left (2+3 x^2+x^4\right )^{5/2}+\frac{125}{13} x^3 \left (2+3 x^2+x^4\right )^{5/2}-\frac{20884 \sqrt{2} \left (1+x^2\right ) \sqrt{\frac{2+x^2}{1+x^2}} E\left (\tan ^{-1}(x)|\frac{1}{2}\right )}{65 \sqrt{2+3 x^2+x^4}}+\frac{1171349 \sqrt{2} \left (1+x^2\right ) \sqrt{\frac{2+x^2}{1+x^2}} F\left (\tan ^{-1}(x)|\frac{1}{2}\right )}{5005 \sqrt{2+3 x^2+x^4}}\\ \end{align*}

Mathematica [F]  time = 0, size = 0, normalized size = 0. \[ \text{\$Aborted} \]

Verification is Not applicable to the result.

[In]

Integrate[(7 + 5*x^2)^3*(2 + 3*x^2 + x^4)^(3/2),x]

[Out]

$Aborted

________________________________________________________________________________________

Maple [C]  time = 0.017, size = 206, normalized size = 0.9 \begin{align*}{\frac{10067363\,{x}^{3}}{15015}\sqrt{{x}^{4}+3\,{x}^{2}+2}}+{\frac{2262081\,x}{5005}\sqrt{{x}^{4}+3\,{x}^{2}+2}}+{\frac{131810\,{x}^{7}}{429}\sqrt{{x}^{4}+3\,{x}^{2}+2}}+{\frac{598324\,{x}^{5}}{1001}\sqrt{{x}^{4}+3\,{x}^{2}+2}}+{\frac{12075\,{x}^{9}}{143}\sqrt{{x}^{4}+3\,{x}^{2}+2}}+{\frac{125\,{x}^{11}}{13}\sqrt{{x}^{4}+3\,{x}^{2}+2}}-{{\frac{1171349\,i}{5005}}\sqrt{2}{\it EllipticF} \left ({\frac{i}{2}}x\sqrt{2},\sqrt{2} \right ) \sqrt{2\,{x}^{2}+4}\sqrt{{x}^{2}+1}{\frac{1}{\sqrt{{x}^{4}+3\,{x}^{2}+2}}}}+{{\frac{10442\,i}{65}}\sqrt{2} \left ({\it EllipticF} \left ({\frac{i}{2}}x\sqrt{2},\sqrt{2} \right ) -{\it EllipticE} \left ({\frac{i}{2}}x\sqrt{2},\sqrt{2} \right ) \right ) \sqrt{2\,{x}^{2}+4}\sqrt{{x}^{2}+1}{\frac{1}{\sqrt{{x}^{4}+3\,{x}^{2}+2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5*x^2+7)^3*(x^4+3*x^2+2)^(3/2),x)

[Out]

10067363/15015*x^3*(x^4+3*x^2+2)^(1/2)+2262081/5005*x*(x^4+3*x^2+2)^(1/2)+131810/429*x^7*(x^4+3*x^2+2)^(1/2)+5
98324/1001*x^5*(x^4+3*x^2+2)^(1/2)+12075/143*x^9*(x^4+3*x^2+2)^(1/2)+125/13*x^11*(x^4+3*x^2+2)^(1/2)-1171349/5
005*I*2^(1/2)*(2*x^2+4)^(1/2)*(x^2+1)^(1/2)/(x^4+3*x^2+2)^(1/2)*EllipticF(1/2*I*x*2^(1/2),2^(1/2))+10442/65*I*
2^(1/2)*(2*x^2+4)^(1/2)*(x^2+1)^(1/2)/(x^4+3*x^2+2)^(1/2)*(EllipticF(1/2*I*x*2^(1/2),2^(1/2))-EllipticE(1/2*I*
x*2^(1/2),2^(1/2)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (x^{4} + 3 \, x^{2} + 2\right )}^{\frac{3}{2}}{\left (5 \, x^{2} + 7\right )}^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x^2+7)^3*(x^4+3*x^2+2)^(3/2),x, algorithm="maxima")

[Out]

integrate((x^4 + 3*x^2 + 2)^(3/2)*(5*x^2 + 7)^3, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (125 \, x^{10} + 900 \, x^{8} + 2560 \, x^{6} + 3598 \, x^{4} + 2499 \, x^{2} + 686\right )} \sqrt{x^{4} + 3 \, x^{2} + 2}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x^2+7)^3*(x^4+3*x^2+2)^(3/2),x, algorithm="fricas")

[Out]

integral((125*x^10 + 900*x^8 + 2560*x^6 + 3598*x^4 + 2499*x^2 + 686)*sqrt(x^4 + 3*x^2 + 2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (\left (x^{2} + 1\right ) \left (x^{2} + 2\right )\right )^{\frac{3}{2}} \left (5 x^{2} + 7\right )^{3}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x**2+7)**3*(x**4+3*x**2+2)**(3/2),x)

[Out]

Integral(((x**2 + 1)*(x**2 + 2))**(3/2)*(5*x**2 + 7)**3, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (x^{4} + 3 \, x^{2} + 2\right )}^{\frac{3}{2}}{\left (5 \, x^{2} + 7\right )}^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5*x^2+7)^3*(x^4+3*x^2+2)^(3/2),x, algorithm="giac")

[Out]

integrate((x^4 + 3*x^2 + 2)^(3/2)*(5*x^2 + 7)^3, x)